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1 Introduction

In this paper we introduce a novel Bayesian factor model based on Markov chain Monte Carlo (MCMC)

methods to inspect how risks in the financial system are interconnected within the Eurozone. The

proposed dynamic factor model explains how financial returns are affected by latent, sector-based factors

and macro-systemic risk factors. We explore the risk dynamics in the Eurozone by analyzing 17 sovereign

CDS and 545 equity returns of the Eurostoxx 600 index over the period 2/1/2007-30/8/2013.

The remainder of the paper is organized as follows. The proposed dynamic factor model is introduced

in section 2. A Bayesian approach to inference based on MCMC methods is presented in section 3. A

simulation study is presented in section 4 in order to assess the performance of the inferential method.

In section 5 we describe the empirical analysis and illustrate the above model and methods. Finally, we

conclude in section 6 with a brief discussion.

2 The Dynamic factor model

In this section we present the dynamic factor model we use to analyse financial return series. In our analy-

sis it is of great interest to identify the risk factors which are most relevant to explain financial returns.

We consider J = 3 different sectors (Sovereign, Banks and Financial Intermediaries, Corporations), each

one composed by mj , j = 1, ..., J, financial assets (CDS and Equities). For these assets we consider the

corresponding returns, rji,t, i = 1, ...,mj , j = 1, ..., J, in every time point, t, t = 1, ..., T . We assume that

the return rji,t is linked to a set of pj local covariates, denoted by Zji,t, which are asset-specific, and a

sector systemic risk factor vjt , common accoss the assets of the jth sector, as follows:

rji,t = Zj′i,tα
j
i + βji,tv

j
t + εji,t, ε

j
i,t˜N

(
0, σ2ij

)
, t = 1, ..., T, i = 1, ...,mj , j = 1, ..., J, (1)

where the factor loadings, βji,t, are assumed to be time-varying and follow a pseudo-stochastic mean

reverting process, in which a set of qj structural sector-based covariates, Gjt , are mixed together with a

stochastic component µji,t through the following equation:

βji,t = βjic + ϕji

(
βji,t−1 − βjic

)
+Gj

′

t A
j
i + µ

j
i,t, µ

j
i,t˜N

(
0, ψ2ij

)
, t = 1, ..., T, i = 1, ...,mj , j = 1, ..., J. (2)

For identifiability reasons, the factor loadings are assumed to be positive, with βji,0 = 0, i = 1, ...,mj , j =

1, ..., J.

Finally, we assume that all the sector-specific systemic risk factors, vjt , are correlated to a macro-

systemic risk factor, Vt. Such a macro-factor is in turn related to a set of covariates Xt:

vjt = γjVt + ωjt , ω
j
t˜N

(
0, k2

1j

)
, j = 1, ..., J, (3)

and

Vt = X
′

tB + ut, ut˜N
(
0, k2

2

)
. (4)

The error term variances of the latent factors vjt , j = 1, ..., J, and Vt are set equal to 1 for identifiability

reasons.
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3 Estimation and Inference

3.1 The Likelihood

In this section, we present the inferential method adopted to estimate the latent factors and the parameters

of the proposed model. The likelihood for the dynamic factor model (1-4) can be written as:

Lik =
J∏

j=1

T∏

t=1

mj∏

i=1

[(
σ−2ij

)1/2
exp

{
−
1

2
σ−2ij

(
rji,t − Zj′i,tα

j
i − βji,tv

j
t

)2}]
×

J∏

j=1

T∏

t=1

mj∏

i=1

[(
ψ−2ij

)1/2
exp

{
−
1

2
ψ−2ij

(
βji,t − βjic − ϕji

(
βji,t−1 − βjic

)
−Gj

′

t A
j
i

)2}]
×

J∏

j=1

T∏

t=1

[
exp

{
−
1

2

(
vjt − γjVt

)2}]
×

T∏

t=1

[
exp

{
−
1

2

(
Vt −X

′

tB
)2}]

.

Then, assuming a prior distribution for the model parameters, P
(
α, σ2, βc, ϕ,A, ψ

2, γ, B
)
, the joint

posterior distribution for all the unknown quantities in our latent factor model can be written as:

P
(
α, β, v, σ2, βc, ϕ,A, ψ

2, γ, V,B|r
)

∝ P
(
r|α, β, v, σ2, βc, ϕ,A, ψ

2, γ, V,B
)
× P

(
α, β, v, σ2, βc, ϕ,A, ψ

2, γ, V,B
)

= P
(
r|a, β, v, σ2

)
× P

(
β|βc, ϕ,A, ψ

2
)
× P (v|γ, V )× P (V |B)× P

(
α, σ2, βc, ϕ,A, ψ

2, γ, B
)
.

where α denotes the parameter set consisting of all αji , i = 1, ...,mj , j = 1, ..., J, and the respective

notation is used for all parameter sets.

3.2 Prior Specification

In our analysis we consider prior independence among the model parameters and use the following prior

specification:

P
(
αji

)
∝ exp

{
−
1

2

(
aji − ξj

1

)′
Ωj

−1

1

(
Aji − ξj

1

)}
≡ Npj

(
ξj
1
,Ωj

1

)
, i = 1, ...,mj , j = 1, ..., J

P
(
Aji

)
∝ exp

{
−
1

2

(
Aji − ξj

2

)′
Ωj

−1

2

(
Aji − ξj

2

)}
≡ Nqj

(
ξj
2
,Ωj

2

)
, i = 1, ...,mj , j = 1, ..., J

P (B) ∝ exp

{
−
1

2
(B − ξ0)

′

Ω−1
0
(B − ξ0)

}
≡ Nq0 (ξ0,Ω0)

P
(
γj
)
∝ exp

{
−
1

2σ2γ

(
γj − µγ

)2
}
≡ N

(
µγ , σ

2

γ

)
, j = 1, ..., J

P
(
βjic

)
∝ exp

{
−
1

2σ2
0

(
βjic − µ0

)2}
≡ N

(
µ0, σ

2

0

)
, i = 1, ...,mj , j = 1, ..., J
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P
(
ϕji

)
∝

1

2B (c0, d0)

(
1 + ϕji
2

)c0−1(
1− ϕji
2

)d0−1
≡ Beta (c0, d0) , i = 1, ...,mj , j = 1, ..., J

P
(
σ−2ij

)
∝

(
σ−2ij

)c1−1
exp

{
−d1σ

−2

ij

}
≡ Ga (c1, d1) , i = 1, ...,mj , j = 1, ..., J

P
(
ψ−2ij

)
∝

(
ψ−2ij

)c2−1
exp

{
−d2ψ

−2

ij

}
≡ Ga (c2, d2) , i = 1, ...,mj , j = 1, ..., J.

3.3 Full Conditional Posterior Distributions

Next we compute the full conditional posterior distributions for the parameters of our dynamic factor

model. The derived full conditional distributions for the precision (inverted variance) parameters are

given by:

P
(
σ−2ij |·

)
∝

(
σ−2ij

)T/2
exp

{
−
1

2
σ−2ij

T∑

t=1

(
rji,t − Zj′i,tα

j
i − βji,tv

j
t

)2
}
×
(
σ−2ij

)c1−1
exp

{
−d1σ

−2

ij

}

≡ Ga

(
T

2
+ c1,

1

2

T∑

t=1

(
rji,t − Zj′i,tα

j
i − βji,tv

j
t

)2
+ d1

)
, i = 1, ...,mj , j = 1, ..., J

P
(
ψ−2ij |·

)
∝

(
ψ−2ij

)T/2
exp

{
−
1

2
ψ−2ij

T∑

t=1

(
βji,t − βjic − ϕji

(
βji,t−1 − βjic

)
−Gj

′

t A
j
i

)2
}
×
(
ψ−2ij

)c2−1
exp

{
−d2ψ

−2

ij

}

≡ Ga

(
T

2
+ c2,

1

2

T∑

t=1

(
βji,t − βjic − ϕji

(
βji,t−1 − βjic

)
−Gj

′

t A
j
i

)2
+ d2

)
, i = 1, ...,mj , j = 1, ..., J

The full conditional posterior distributions for the latent factors vjt and the parameters αji of equation

(1) are given by:

P
(
vjt |·

)
∝

mj∏

i=1

[
exp

{
−
1

2
σ−2ij

(
rji,t − Zj′i,tα

j
i − βji,tv

j
t

)2}]
× exp

{
−
1

2

(
vjt − γjVt

)2}

≡ N



γjVt +

mj∑
i=1

σ−2ij β
j
i,t

(
Zj′i,tr

j
i,t − αji

)

1 +
mj∑
i=1

σ−2ij

(
βji,t

)2 ,
1

1 +
mj∑
i=1

σ−2ij

(
βji,t

)2


 , j = 1, ..., J, t = 1, ..., T

P
(
αji |·

)
∝ exp

{
−
1

2
σ−2ij

T∑

t=1

(
rji,t − Zj′i,tα

j
i − βji,tv

j
t

)2
}
× exp

{
−
1

2

(
aji − ξj

1

)′
Ωj

−1

1

(
Aji − ξj

1

)}

≡ Npj

(
ξj
1∗
,Ωj

1∗

)
, i = 1, ...,mj , j = 1, ..., J,

where ξj
1∗

= Ωj
1∗

[
Ωj

−1

1
ξj
1
+ σ−2ij Z

j′
i,t

(
rji − diag(vj)βji

)]
, and Ωj

1∗
=
[
Ωj

−1

1
+ σ−2ij Z

j′
i Z

j
i

]−1
.

where rji and Z
j
i are the vector of returns and the local covariates design matrix for the ith asset of the

jth sector, and diag
(
vj
)
is a T × T diagonal matrix with elements vj

1
, vj

2
,..., vjT in the main diagonal.
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The full conditional posterior distributions for the parameters βjic, ϕ
j
i , and Aji of equation (2) are

given by:

P
(
βjic|·

)
∝ exp

{
−
1

2
ψ−2ij

T∑

t=1

(
βji,t − ϕjiβ

j
i,t−1 −Gj

′

t A
j
i −

(
1− ϕji

)
βjic

)2
}
× exp

{
−
1

2σ2
0

(
βjic − µ0

)2}

≡ N
(
µ∗
0
, (σ∗

0
)
2
)
, i = 1, ...,mj , j = 1, ..., J,

where µ∗
0
= (σ∗

0
)
2

[
σ−2
0
µ0 + ψ−2ij

(
1− ϕji

) T∑

t=1

(
βji,t − ϕjiβ

j
i,t−1 −Gj

′

t A
j
i

)]
,

and (σ∗
0
)2 =

[
Tψ−2ij

(
1− ϕji

)2
+ σ−2

0

]−1

P
(
ϕji |·

)
∝ exp

{
−
1

2
ψ−2ij

T∑

t=1

(
βji,t − βjic − ϕji

(
βji,t−1 − βjic

)
−Gj

′

t A
j
i

)2
}
×

(
1 + ϕji
2

)c0−1(
1− ϕji
2

)d0−1

P
(
Aji |·

)
∝ exp

{
−
1

2
ψ−2ij

T∑

t=1

(
βji,t − βjic − ϕji

(
βji,t−1 − βjic

)
−Gj

′

t A
j
i

)2
}
× exp

{
−
1

2

(
Aji − ξj

2

)′
Ωj

−1

2

(
Aji − ξj

2

)}

≡ Nqi

(
ξj
2∗
,Ωj

2∗

)
, i = 1, ...,mj , j = 1, ..., J,

where ξj
2∗

= Ωj
2∗

[
Ωj

−1

2
ξj
2
+ ψ−2ij G

j
′
(
βji − βjic − ϕji

(
βji,−1 − βjic

))]
, and Ωj

2∗
=
[
Ωj

−1

2
+ ψ−2ij G

j
′

Gj
]−1

.

The full conditional posterior distributions for the time-varying parameters βji,t, t = 1, ..., T of equation

(2) are given below. In order to draw the vector βji =
(
βji,1, ..., β

j
i,T

)′
jointly, given everything else, from

its full conditional posterior, it is convenient to write equations (1-2) in the form:

rji = Zji α
j
i + diag

(
vj
)
βji + εji , ε

j
i˜NT

(
0T , σ

2

ijIT
)
, i = 1, ...,mj , j = 1, ..., J,

where rji is a T × 1 vector, Zji is a T × pj design matrix , diag
(
vj
)
is a T × T diagonal matrix with

elements vj
1
, vj

2
,..., vjT in the diagonal, εji is a T ×1 vector of innovations, IT is the T ×T identity matrix.

In a similar form equation (2) can be written as:

βji = βjic1T + ϕji

(
S1β

j
i − βjic1T

)
+GjAji + µji , µ

j
i˜NT

(
0T , ψ

2

ijIT
)
, i = 1, ...,mj , j = 1, ..., J,

where 1T is a T × 1 vector of ones and S1 is a T × T matrix of the form S1 =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




.
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Then, the full conditional posterior distribution of the vector βji can be computed as:

P
(
βji |·

)
∝ exp

{
−
1

2
σ−2ij

(
rji − Zji α

j
i − diag

(
vj
)
βji

)′ (
rji − Zji α

j
i − diag

(
vj
)
βji

)}
×

exp




−1

2
ψ−2ij

(
βji − βjic1T − ϕjiS1β

j
i + ϕjiβ

j
ic1T −GjAji

)
×

×
(
βji − βjic1T − ϕjiS1β

j
i + ϕjiβ

j
ic1T −GjAji

)



 Ind{βji > 0}

= NT
(
ξ∗ij ,Ω

∗

ij

)
Ind{βji > 0}, i = 1, ...,mj , j = 1, ..., J,

where ξ∗ij = Ω∗ij

[
σ−2ij diag

(
vj
) (
rji − Zji α

j
i

)
+ ψ−2ij

(
IT − ϕjiS1

)′ (
βjic1T − ϕjiβ

j
ic1T +GjAji

)]
,

and Ω∗ij =

[
σ−2ij diag

(
vj
)
diag

(
vj
)
+ ψ−2ij

(
IT − ϕjiS1

)′ (
IT − ϕjiS1

)]−1
,

where Ind{βji > 0} is an indicator function which satisfies the constraint that all facttor loading should

be positive.

The full conditional posterior distributions for the parameters γj , and the latent factors Vt of equation

(3) are given by:

P
(
γj |·

)
∝ exp

{
−
1

2

T∑

t=1

(
vjt − γjVt

)2
}
× exp

{
−
1

2σ2γ

(
γj − µγ

)2
}

= N



σ−2γ µγ +

T∑
t=1

vjtVt

σ−2γ +
T∑
t=1

V 2t

,
1

σ−2γ +
T∑
t=1

V 2t


 .

P (Vt|·) ∝
J∏

j=1

exp

{
−
1

2

(
vjt − γjVt

)2}
× exp

{
−
1

2

(
Vt −X

′

tB
)2}

= N




X
′

tB +
J∑
j=1

γjvjt

1 +
J∑
j=1

γj2
,

1

1 +
J∑
j=1

γj2


 , t = 1, ..., T.

The full conditional posterior distributions for parameters B of equation (4) are given by:

P (B|·) ∝ exp

{
−
1

2
(V −XB)

′

(V −XB)

}
× exp

{
−
1

2
(B − ξ0)

′

Ω−1
0
(B − ξ0)

}

≡ Nq0 (ξ
∗

0
,Ω∗

0
)

where ξ∗
0
= Ω∗

0

[
X

′

V +Ω−1
0
ξ
0

]
, and Ω∗

0
=
[
X

′

X +Ω−1
0

]−1
.

4 Simulation Study

In this section, we conduct several simulation experiments in order to assess the inferential method based

on the proposed MCMC algorithm. The aim of this study is to assess the performance of the Bayesian

methodology, to estimate the model parameters, the latent factors, the time-varying betas as well as the

macro-systemic risk factor. We conduct a series of simulation experiments considering different factor
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models starting from the simple factor model of Lopez and West (2004). We consider different sample

sizes of time series, i.e. T = 100 , T = 200 and T = 500 data points, however we present the simulation

experiments only for T = 100 for reasons of space. First, we simulate data from the simple factor model

M1:

rji,t = αji + βjiv
j
t + εji,t, ε

j
i,t˜N

(
0, σ2ij

)
, i = 1, ...,mj , j = 1, ..., J,

where the factors vjt follow a standard normal distribution, i.e.

vjt ˜N (0, 1) , j = 1, ..., J.

In our simulation experiments we have used J = 3 sectors, with m1 = 2, m2 = 3 andm3 = 5, that is there

are two assets in the first sector, three assets in the second and five assets in the third sector. We run

the MCMC algorithm for 10, 000 iterations using a burn-in period of 1, 000 iterations and estimate the

model parameters and the latent factors. Figure 1 illustrates the posterior means for the latent factors

vjt , j = 1, 2, 3 (red line) and the true factor values (blue line) simulated based on model specification

M1. This figure indicates the accuracy of the estimates of the latent factors to the true ones. We also

evaluate the performance of the latent factor estimates by using the following statistic (Doz, Giannone

and Reichlin, 2006, Korobilis and Schumacher, 2014):

SSF0 =

tr

[
v
′

v̂
(
v̂
′

v̂
)−1

v̂
′

v

]

tr [v′v]
,

where v̂ denotes the latent factor estimates and v denotes the true simulated factor. This statistic

takes values between zero and one, and therefore, values of SSF0 close to one indicate a very good

approximation of the true latent factors. Based on the results presented in Table 1 (line 1 for model M1)

we observe that the SSF0 statistics ranges from 0.922 to 0.944, indicating a very good approximation of

the estimated latent factors to the true simulated ones.

Insert Table 1 about here

Insert Figure 1 about here

Next, we simulate data from a factor model, M2 that allows for time-varying betas:

rji,t = αji + βji,tv
j
t + εji,t, ε

j
i,t˜N

(
0, σ2ij

)
, i = 1, ...,mj , j = 1, ..., J,

where the parameters βji,t are time-varying and assume a Random Walk process through the following

equation:

βji,t = βji,t−1 + µji,t, µ
j
i,t˜N

(
0, ψ2ij

)
, i = 1, ...,mj , j = 1, ..., J, t = 1, ...T

with βji,0 = 0 and β
j
i,t > 0, i.e. set the initial condition of the factor loadings equal to zero, and impose

the factor loadings during the time periods to be positive in order to identify the model (see, for example,

Geweke and Zhou, 1996, Lopez and West, 2004). The factors, vjt , follow a standard normal distribution

i.e.

vjt ˜N (0, 1) , j = 1, ..., J.
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Table 1 (second line for model M2) and Table 2 (first line for model M2) present the performance

evaluation statistic SSF0 for the estimated latent factors vjt and for the estimated time-varying βji,t

parameters, respectively. The values of this statistic are very high, near to one, indicating a very good

approximation of the estimated latent factors and beta parameters to the corresponding true values used

in the simulation. This is also depicted in Figure 2, which illustrate the posterior means for the estimated

latent factors vjt , j = 1, 2, 3 (red line) and the true factor values (blue line), and in Figure 3, which

presents the posterior means for the estimated time-varying parameters βji,t, j = 1, 2, 3 (red line) and

true time-varying beta values (blue line) simulated based on model specification M2.

Insert Table 2 about here

Insert Figure 2 - Figure 3 about here

Finally, we simulate data from the following dynamic factor model, M3:

rji,t = αji + βji,tv
j
t + εji,t, ε

j
i,t˜N

(
0, σ2ij

)
, i = 1, ...,mj , j = 1, ..., J,

where the parameters βji,t are time-varying and assume a Random Walk process through the following

equation

βji,t = βji,t−1 + µji,t, µ
j
i,t˜N

(
0, ψ2ij

)
, i = 1, ...,mj , j = 1, ..., J.

We assume that each sector j has a specific systemic risk factor vjt correlated to a macro-systemic risk

factor Vt. Such a macro-factor is in turns related to a set of covariates Xt:

vjt = αj
1
Vt + ωjt , ω

j
t˜N

(
0, k2

1j = 1
)
, j = 1, ..., J,

and

Vt = X
′

tB + ut, ut˜N
(
0, k2

2
= 1

)
.

Table 1 (third line for model M3) and Table 2 (second line for model M3) present the performance

evaluation statistic SSF0 for the estimated latent factors vjt , the estimated macro-systemic risk factor Vt,

and for the estimated time-varying βji,t parameters, respectively. And in this simulation experiment, the

statistic SSF0 receives high values, indicating a very good approximation of the estimated quantities to

the corresponding true ones. This is also depicted in Figures 4-6, which illustrate the posterior means

for the estimated quantities versus the true values used in the simulation experiment based on model

specification M3.

Insert Figure 4 - Figure 6 about here

Based on the result of the simulation experiments we can conclude that the proposed Bayesian infer-

ential procedure is able to estimate accurately the unknown factors and time-varying parameters of the

dynamic factor model.
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5 Empirical Application

In our empirical analysis we used daily returns for 17 sovereign CDS of the Eurozone and 545 equity

returns of the Eurostoxx 600 index over the period 2/1/2007-30/8/2013. Sovereign CDS are used to

measure sovereign risks, while equities are used to estimate risk dynamics for financials (what we mean

as Bank and other Financial Intermediaries) and non-financials (Corporations). As we described in section

2, our system of equations includes sector-based and common covariates depending on the financial asset

return we are modelling (sovereign CDS, equity financial, equity non-financial). Specifically, we used:

Euro Sovereign CDSs

• Country-specific covariates (equation 1): (1) real GDP growth; (2) export/GDP; (3) unemployment

rate; (4) M3/GDP; (5) Debt/GDP; (6); domestic industrial production; (7) domestic inflation; (8)

domestic equity index returns.

• Sector-specific covariates (equation 2): (9) Volatility premium (VIX minus the realized volatility

over the next 30 days); (10) Liquidity spread (Euribor 3m minus Eonia 3m); (11) Euro/US Dollar

exchange rate variations.

Euro Stocks

• Country-specific covariates (equation 1): (1) sectorial index (Financial vs. Non Financial); (2)

domestic industrial production; (3) domestic inflation.

• Sector-specific covariates (equation 2): (4) Momentum (6m minus 1m Eurostoxx 600 computed at

time t by Pt−21/Pt−126−1 where Pt is the asset price at time t, in order to avoid the 1-month reversal

period); (5) Risk Premium Europe (Stoxx Europe 600 earning per share minus (0.70 × [BofA ML

7-10y Euro Non-Financial] + 0.30 × [BofA ML 7-10y Sterling Corporating Non-Financial]) ); (6)

Risk Premium US (S&P 500 earning per share minus BofA ML US Corporate 7-10y Yield).

Macro-systemic risk factor

• systemic covariates (equation 4): (1) Credit Spread (US Corp BBB/Baa minus US Treasury 10 yr);

(2) US Tbill 3m; (3) Euro Term Spread (10 yr minus 2 yr government bond yield); (4) VIX.

A first step in the empirical application is to estimate the simple factor model M1:

rji,t = αji + βjiv
j
t + εji,t, ε

j
i,t˜N

(
0, σ2ij

)
, i = 1, ...,mj , j = 1, ..., J,

where the factors vjt follow a standard normal distribution, i.e.

vjt ˜N (0, 1) , j = 1, ..., J.

In this application we use J = 3 sectors, withm1 = 7,m2 = 6 andm3 = 7, that is there are seven sovereign

CDS in the first sector, six assets in the Financial sector and seven assets in the Non-Financial sector. In

9



particular, we use the CDS of Germany, Greece, Spain, France, Ireland, Italy and Portugal, the financial

assets are Banca Popolare Di Milano (Italy), Bank of Ireland (Ireland), Deutsche Bank (Germany), Banco

Comercial Portugues (Portugal), Banco Popular Espanol (Spain), BNP Paribas (France), while the Non-

Financial assets include Fiat (Italy), Hellenic Telecommunication (Greece), C&C Group (Ireland), Bayer

(Germany), EDP Energas (Portugal), Endesa (Spain), Air France (France).

Insert Table 3, Table 4 about here

Insert Figure 7 about here

We run the MCMC algorithm for 20, 000 iterations using a burn-in period of 5, 000 iterations and

estimate the model parameters and the latent factors. Figure 7 illustrates the posterior means for the

estimated latent factors vjt , j = 1, 2, 3 (red line). We present in Table 3, the estimated βji parameters and

their corresponding standard errors, while tin Table 4 we present the correlation among the βji parameters

within each sector.
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Table 1: Performance evaluation of the estimated latent factors vjt [for the three model specifications

M1, M2, M3] and of the macro-systemic risk factor Vt [for the third model specifications M3] based on

the SSF0 ststistic.

Models v1t v2t v3t vjtall Vt

M1 0.922 0.934 0.944 0.934 −

M2 0.924 0.903 0.959 0.931 −

M3 0.946 0.971 0.976 0.969 0.967

Table 2: Performance evaluation of the estimated time-varying parameters βji,t based on the SSF0

ststistic for the two model specifications M2, M3.

Models β1
1,t β1

2,t β2
1,t β2

2,t β2
3,t β3

1,t β3
2,t β3

3,t β3
4,t β3

5,t βji,tall

M1 − − − − − − − − − − −

M2 0.954 0.941 0.965 0.912 0.958 0.973 0.961 0.932 0.975 0.966 0.988

M3 0.973 0.963 0.987 0.991 0.979 0.996 0.997 0.993 0.996 0.996 0.996

Table 3: The estimated βji parameters and their corresponding standard errors.

CDS βcdsGER,t βcdsGR,t βcdsSP,t βcdsFR,t βcdsIRE,t βcdsIT,t βcdsPO,t

Estimates 0.699 0.522 0.889 0.739 0.314 0.876 0.782

Std.Error (0.022) (0.023) (0.019) (0.021) (0.025) (0.020) (0.021)

Financials βFinGER,t βFinGR,t βFinSP,t βFinFR,t βFinIRE,t βFinIT,t βFinPO,t

Estimates 0.861 - 0.755 0.883 0.457 0.642 0.514

Std.Error (0.020) - (0.021) (0.019) (0.024) (0.022) (0.023)

Non-Financial βNFinGER,t βNFinGR,t βNFinSP,t βNFinFR,t βNFinIRE,t βNFinIT,t βNFinPO,t

Estimates 0.651 0.405 0.586 0.657 0.340 0.712 0.585

Std.Error (0.024) (0.026) (0.025) (0.024) (0.026) (0.024) (0.025)
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Table 4: Correlations of the estimated βji parameters within sector.

Panel A: First sector - CDS

(1) (2) (3) (4) (5) (6) (7)

Germany (1) 1.00

Greece (2) 0.22 1.00

Spain (3) 0.40 0.28 1.00

France (4) 0.35 0.23 0.43 1.00

Ireland (5) 0.12 0.08 0.17 0.14 1.00

Italy (6) 0.41 0.29 0.60 0.44 0.16 1.00

Portugal (7) 0.34 0.25 0.50 0.38 0.15 0.49 1.00

Panel B: Second sector - Financials

(1) (2) (3) (4) (5) (6)

Italy (1) 1.00

Ireland (2) 0.16 1.00

Germany (3) 0.33 0.23 1.00

Portugal (4) 0.18 0.12 0.25 1.00

Spain (5) 0.30 0.19 0.42 0.23 1.00

France (6) 0.34 0.22 0.53 0.26 0.41 1.00

Panel C: Third sector - Non-Financials

(1) (2) (3) (4) (5) (6) (7)

Italy (1) 1.00

Greece (2) 0.12 1.00

Ireland (3) 0.10 0.05 1.00

Germany (4) 0.18 0.10 0.10 1.00

Portugal (5) 0.10 0.11 0.08 0.19 1.00

Spain (6) 0.12 0.09 0.09 0.18 0.22 1.00

France (7) 0.27 0.11 0.09 0.15 0.10 0.12 1.00
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Figure 1: Posterior means for the latent factors vjt , j = 1, 2, 3, (red line) and true factor values (blue

line) simulated based on model specification M1.
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Figure 2: Posterior means for the latent factors vjt , j = 1, 2, 3, (red line) and true factor values (blue line)

simulated based on model specification M2.

14



0 20 40 60 80 100
0

2

4

M2: time−varying betas b1
1

0 20 40 60 80 100
0

1

2

M2: time−varying betas b1
2

0 20 40 60 80 100
0

5

M2: time−varying betas b2
1

0 20 40 60 80 100
0

2

4

M2: time−varying betas b2
2

0 20 40 60 80 100
0

5

10

M2: time−varying betas b2
3

0 20 40 60 80 100
0

1

2

M2: time−varying betas b3
1

0 20 40 60 80 100
0

2

4

M2: time−varying betas b3
2

0 20 40 60 80 100
0

2

4

M2: time−varying betas b3
3

0 20 40 60 80 100
0

5

M2: time−varying betas b3
4

0 20 40 60 80 100
0

2

4

M2: time−varying betas b3
5

Figure 3: Posterior means for the time-varying parameters βji,t, j = 1, 2, 3, (red line) and true time-varying

beta values (blue line) simulated based on model specification M2.
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Figure 4: Posterior means for the latent factors vjt , j = 1, 2, 3, (red line) and true factor values (blue line)

simulated based on model specification M3.
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Figure 5: Posterior means for the macro-systemic risk factor Vt (red line) and true risk factor values (blue

line) simulated based on model specification M3.
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Figure 6: Posterior means for the time-varying parameters βji,t, j = 1, 2, 3, (red line) and true time-varying

beta values (blue line) simulated based on model specification M3.
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Figure 7: Posterior means for the latent factors vjt , j = 1, 2, 3, estimated using model specification M1.
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